Luminit DTF Beta Example

Date: January 15, 2016

Authors: Anthony Ang – Senior Optical Engineer, Luminit LLC.

Please read Luminit LSD user guide before proceeding.

This is a basic example using Luminit DTF user guide as a basis to help users navigate Zemax user define scatter functions using Luminit's DTF functions. The example below uses Luminit's DTF beta function.

- 1. Locate and copy DTF20degBeta.dll file.
- 2. If Zemax is open, close it at this time. Then go to Windows (C:)>Program Files>Zemax Optical Studio>DLL>SurfaceScatter and paste the file into the SurfaceScatter folder.

3. Open Zemax, and set up your source and object on the spread sheet. Make sure you are in nonsequential mode.

Click the object, and open the object properties. In this case, an acrylic (PMMA) standard lens object is chosen with a thickness of 0.1 and a radius of 0.

Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	Radius 1	Conic 1	Clear 1	Edge 1	Thickn
0	0	0.000	0.000	-2.000	0.000	0.000	0.000		10	100000	1.000	0	
0	0	0.000	0.000	0.000	0.000	0.000	0.000	PMMA	0.000	0.000	1.000	1.000	0.1
0	0	0.000	0.000	0.000	0.000	0.000	0.000		90.000	10.000	181	180	
0	0	0.000	0.000	0.000	180.000	0.000	0.000		90.000	10.000	181	180	
													>

The source is a source ellipse and is -2.00 distance away.

⇒ 🔞	● @													
									Confi	iguration 1/1 🔇 📎				
Ref O	bject	Inside Of	X Positio	n Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	# Layout Rays	# Analysis Rays	Power(Watts)	Wavenumber	Color
	0	0	0.000	0.000	-2.000	0.000	0.000	0.000	-	10	100000	1.000	0	
	0	0	0.000	0.000	0.000	0.000	0.000	0.000	PMMA	0.000	0.000	1.000	1.000	0.1
	0	0	0.000	0.000	0.000	0.000	0.000	0.000		90.000	10.000	181	180	
	0	0	0.000	0.000	0.000	180.000	0.000	0.000		90.000	10.000	181	180	
														>

4. Check to see if the object surface 'face' is normal to the Z axes (facing towards or away from the Z axes). You can use the Zemax object viewer for this. The selected surface face will be highlighted in orange.

5. To use Luminit DTF, follow the menu options:

Object Properties>Coat/Scatter>Scatter>Scatter Model>User Defined>DLL Name>DTF20degBeta

6. Set the 'Scatter Fraction' to 1.

Туре			Scatter	
Draw	Face	1, Front Face 🔹	Scatter Model:	User Defined 🔹
Sources			Number Of Design	
Coat/Scatter	Profile:	Use definitions below 🔻	Number Of Rays:	1 V Scatter Fraction 1
Scatter To			DLL Name:	DTF20degBeta.dll 🔹
Volume Physics		Save Delete		
Index	Face Is:	Object Default 🔹		
Diffraction	Coating	None	Orientation of DTF	0
CAD			Thin Window Sc	attering
				-

Apply only to '1, Front Face'. Other faces should be 'No Scattering'.

7. Click 'Ray Trace', and a window will pop up.

8. In 'Ray Trace Control', turn off 'Split' and 'Polarization'. Turn on 'Scatter' and 'Ignore Errors'. When you are ready to trace the rays, click 'Clear & Trace'.

Ray Tr	ace Control
Clear Detectors	All ×
Auto Update	# of Cores: 8 ~
Use Polarization	✓ Ignore Errors
Split NSC Rays	✓ Scatter NSC Rays
Save Rays:	
ZRD Format:	Compressed Full Data 👋
Filter:	
ldle	
Terminate	Exit

9. The analysis rays will trace and show up on the analysis detectors.